
prealpha manual

Frederik Philippi

November 8, 2024

A tool to extract information from molecular dynamics trajectories.

1

Contents

1 Introduction 4

2 Main Features 5
2.1 Distribution Functions . 5

2.1.1 Distribution of molecules around each other 5
2.1.2 Charge Arm Distribution 9

2.2 Dihedral Conditions . 10
2.3 Orientation correlation functions 11
2.4 Relative Mean Molecular Velocity Correlation Coefficients: 12
2.5 Custom Components of Velocity Correlation Functions 13
2.6 Mean (Squared) Displacement . 13
2.7 Average distances . 15
2.8 Coordination Species . 15
2.9 Cluster Analysis . 18

3 Getting Started 19
3.1 First Steps . 19
3.2 Simple Examples . 19

3.2.1 Drude Particles . 19
3.2.2 Estimating RAM . 20
3.2.3 The BMIMTFSI example trajectory (xyz) 20

3.3 The Input Trajectory File . 21
3.4 Molecule Recognition Module . 21
3.5 High Performance Computing . 22

4 Input Files 24
4.1 General Input File . 24
4.2 Molecular Input File . 29
4.3 Relative Mean Molecular Velocity Correlation Input File 31
4.4 Custom Velocity Correlation AND CACF Components Input File 31
4.5 Diffusion Input File for Self Diffusion 32
4.6 Diffusion Input File for Cross Diffusion 32
4.7 Distribution Input File . 33
4.8 Dihedral Input File . 34
4.9 Reorientation Input File . 35
4.10 Distance Input File . 36
4.11 Coordination species input file 38
4.12 Cluster Analysis input file . 41

5 Research Examples 44
5.1 Research Example 1: Ammonium Ionic Liquids 44
5.2 Research Example 2: Charge Transfer and Polarisability 44
5.3 Research Example 3: Advanced Correlation Functions 47
5.4 Research Example 4: Speciation and Cluster Analysis 49

2

6 Disclaimer 51

3

1 Introduction

prealpha is a trajectory analyser which was made for fully atomistic trajecto-
ries - mostly cartesian coordinates, however some tools work equally well with
trajectories that contain velocities, or even require velocities. Before you dive
in here, also have a look at TRAVIS.3,2 I started coding prealpha after real-
ising that quite a few of the functionalities I needed were not implemented in
TRAVIS, thus you will not find absolutely basic things like radial distribution
functions in prealpha.∗ If you decide to use prealpha, please also cite our work.16

prealpha is written in Fortran and parallelised with the OpenMP library to
share the workload. When prealpha (after compilation) is invoked, any com-
mand line arguments will be treated as general input files. For every valid one of
these input files, the main program runs once. The main program itself consists
of two largely independent parts, the user interface and the analysis itself.

The user interface starts only if no general input file could be found. (This
can also be one of those specified in the command line) This ’manual’ is also
available via the user interface. The most useful standalone feature of the user
interface is the option to interactively generate input files, which should ensure
that the input is formally valid (for example, only lowercase letters are used in
the input keywords).

If there is a general input file, then the actual analysis starts, and the general
input file is read line by line. During the analyis, no further input is required.
Errors in the general input file are not tolerated - if a line cannot be read,
then the execution stops and an error is printed. When a keyword linking to a
separate input file is found, then the corresponding module is invoked to read
and run the separate input. Some of the calculations are quite involved and
might run for hours or days. The required real time can be greatly reduced by
using parallelisation. To use the parallelisation, it is necessary to load the whole
trajectory into RAM. The reason for this is to overcome fileIO as bottleneck.

All output files, including structures, are written to the output folder. These
files contain a header with variable names and the reference if necessary. The
names of the output files from a certain type of calculation are fixed. This
means that if you want to perform, say, two dihedral condition analyses, the
files will be overwritten. To avoid this, request a prefix such as ’cation ’.† The
’timeline’ printed in some files is obtained from timestep multiplied with the
variable TIME SCALING FACTOR.‡

∗There actually is a way to calculate RDFs with prealpha, but they are only a side product
of the polar distribution functions.

†This prefix can be set with ’set prefix ”cation ”’
‡The time scaling factor can be set in the general input file. If you have a trajectory

dumped every 1000 steps with 0.5 fs timestep, then a reasonable choice would be ’time scaling
500’, so your time unit will be fs.

4

2 Main Features

The main features of prealpha are explained here. There are many other small
utilities which may be useful, too. These are explained in the section ’input files’
as they are invoked straight from the general input file. In contrast to that, each
of the following subsections is treated as a distinct feature with its own input
file. Some of the more demanding routines exist also in a parallelised version.
For most of these features, a number of switches are available. These switches
influence e.g. the print level, bin counts or steps to analyse. Information about
all possible switches is given in the section ’input files’.

For most of these features, a number of switches are available. These switches
influence e.g. the print level, bin counts or steps to analyse. The example
input files (option ’5’ in the main menu) contain the most common switches.
Information about all possible switches is provided by option ’2’ in the main
menu.

2.1 Distribution Functions

This feature allows the user to calculate distribution functions of angles and
distances. Apart from distribution functions of molecules around each other,
this also includes the possibility of calculating the distribution of dipole moments
(or charge arms).

2.1.1 Distribution of molecules around each other

Figure 1 shows the cylindrical distribution function of cations around cations in
an ionic liquid. There is anisotropy in the system, which can be seen from the
higher density perpendicular and collinear to the reference cation. The z-axis
was chosen as reference vector here. Normalisation is the same as for a ’classical’
RDF, i.e. the distribution function goes to 1 at large distances, corresponding
to the ideal gas density.

The same system analysed with a polar distribution function is shown in
Figure 2. In Figure 2, the ideal density was subtracted (i.e. the trace, which
is exactly the cation-cation-RDF). Thus, the anisotropy becomes even more
visible: areas of increased density are positive, those with reduced density are
negative.

5

5 10 15 20

-10

-5

0

5

10
b(
co

llin
ea

r_
di
st
an

ce
)

a(perpendicular_distance)

0.000

0.1625

0.3250

0.4875

0.6500

0.8125

0.9750

1.137

1.300

absolute occurrence

Figure 1: Cylindrical distribution of cations around cations

0 15
30

45

60

75

90

105

120

135

150
165180

0

5

10

15

0

5

10

15 -0.10

-0.08

-0.05

-0.02

0.00

0.02

0.05

0.08

0.10

occurrence

High probability

Low probability

Figure 2: Polar distribution of cations around cations

6

The distribution functions can also be computed considering *every* molecule
type, which corresponds to a normalised sum of all distribution functions. This
is useful as the components can then be weighted by charge, hence it is possible
to visualise areas of positive and negative charge density in the surroundings
of a reference molecule/ion. From this, the Coulomb interaction energy is also
accessible as a function of distance, see Figure 3 and Figure 4. This is related
to the Sum Rules,11 which are also implemented in prealpha.

0 10 20 30 40 50 60

-800

-700

-600

-500

-400

-300

-200

-100

0

100

C
ou

lo
m

b
in

te
ra

ct
io

n
en

er
gy

 /
kJ

 m
ol

-1

radial distance / Anström

 Alkyl Cation
 Ether Cation

Figure 3: Coulomb interaction energy as a function of distance. Here, the
Coulomb stabilisation of a single ion is about 400 kJ/mol.

7

5 10 15 20 25 30

500 1000 1500 2000 2500 3000

-800

-700

-600

-500

-400

-300

-200

-100

0

Distance / pm

U
C
+U

A =E
C

ou
lo

m
b /

 k
J

m
ol

-1

Distance / Å

 unscaled charges
 scaled charges
 CL&Pol/TG-NH

Figure 4: The Coulomb energy integral showing differences between polarisable
(CL&Pol/TG-NH), non-polarisable, and scaled charge polarisable simulations.
Calculated with integer (±1) point charges placed on the centre of charge of
the ions. The green dashed line is a guide for the eye showing the exponential
screening component. Adapted from Ref. [12] with permission from the PCCP
Owner Societies.

8

2.1.2 Charge Arm Distribution

Such a polar distribution function can also be constructed for the dipole moment
of the molecules, or the charge arm (distance between center of mass and center
of charge) for ions. prealpha also writes the radial distribution function, i.e. the
trace of the corresponding polar distribution function. Examples are given in
Figure 5 and Figure 6.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

O
cc
ur
re
nc
e

Distance

 Field
 no Field

Figure 5: Occurrence of charge arm lengths (distance between centre of charge
and centre of mass). The molecule has two states, the one with the larger charge
arm is preferred in the presence of an electric field.

9

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40.6 0.8 1.0 1.2 1.4 1.6 1.8
0.00

0.01

0.02

0.03

0.04

0.05

Anion charge arm length / Å

 ADCH scaled atom-wise
 ADCH unscaled
 CL&P uniformly scaled
 CL&P unscaled
 CHELPG scaled atom-wise
 CHELPG unscaled
 CL&Pol/TG-NH

trans

cis

a) b)
0 1 2 3 4 5 6 7

|manion| / debye
no

rm
al

is
ed

 fr
eq

ue
nc

y

Cation charge arm length / Å

2 3 4 5 6 7 8 9
|mcation| / debye

Figure 6: Occurrence of charge arm length in (a) cations and (b) anions of the
same ionic liquid, but with different simulation setups. Adapted from Ref. [12]
with permission from the PCCP Owner Societies.

2.2 Dihedral Conditions

Allows the user to specify a set of dihedral conditions to be fulfilled. These
could e.g. be the two dihedrals in [NTf2]− (’cisoid’ vs. ’transoid’), or some
dihedrals along a side chain (= a certain conformation like ’all-trans’). It is
possible to ’fold’ the specified dihedrals (convenient for cisoid/transoid), then
on top of the range ’a’ to ’b’, prealpha will also check for (360-b) to (360-a).
For these conditions, the following analyses are available:

• (Independent) incidences (or ’counts’) for each specified dihedral.

• Dependent incidences, i.e. the 2D PES subset (only for 2 dihedrals). From
this, the potential of mean force can be obtained as −RTln(occurrence)

• For each timestep the share of fulfilled conditions (like, ’42.0% transoid’)

• The intermittent binary autocorrelation function of the specified condition
(PARALLELISED). The definition is given in Equation 1. Here, h is a
binary identifier, i.e. h = 1 if the dihedral condition is fulfilled and h = 0
otherwise.

Cdih(t) =
〈(h(t0 + t)− 〈h〉)(h(t0)− 〈h〉)〉

〈(h(t0)− 〈h〉)2〉
(1)

The lifetime can be obtained from the integral of the autocorrelation func-
tion, i.e. τdih =

∫∞
0
Cdih(t)dt.

10

The encountered values of the specified dihedrals can also be exported in a
separate file. The dependent indices are convenient to construct a contour plot
showing conformations, Figure 7.

Figure 7: Probability of finding a molecule in a certain geometry (i.e., a certain
combination of two dihedral angles). Given as counts.

2.3 Orientation correlation functions

Computes the reorientational time correlation function for a given vector.(PARALLELISED)
The base and tip point of this vector are defined as fragment of a molecule
(including single atoms) Alternatively, when atomic charges are available, the
dipole moment / charge arm vector can be used. Different legendre polynomials
are available, and the computed quantity is Cl(t) = 〈Pl(u(t) · u(t = 0))〉 (u
unit vector of fragment, P legendre polynomial of order l, t time shift) see also
equation (11.11.1) in6 or, for ionic liquids, for example equation (2) in21.

11

2.4 Relative Mean Molecular Velocity Correlation Coeffi-
cients:

Unlike most other modules, this one needs atomic VELOCITIES instead of co-
ordinates. Computes relative mean molecular velocity correlation coefficients
based on [20]. No reference frame dependent properties are calculated (who
needs these anyway?). Only two molecule types at once are supported currently.
If you want cross-correlations, then I would recommend using the Einstein rela-
tion rather than the Green-Kubo relation, see also the MSD part. The following
quantities from [20] have been implemented:

• RMM-VCFs Λab(t), equation (4)

• The integral and the normalised function C12(t)

Optionally, these self-contributions can also be computed:

• ΛS(t) , equation (8), for both specified particles (PARALLELISED)

• The integral and the normalised functions C1(t) and C2(t)

• Self-velocity correlations, eq (7), as well as C0(t)

• All corresponding diffusion quantities based on eq (17)

• The δ function as in eq (19)

• The time-dependent δ function, calculated as δ(t) = C12(t)− C0(t)

• A reference frame independent combination of distinct contributionsDd
12(t)

Thus, everything in Table II. of the above reference is available. Additionally,
conductivities are printed:

• Self, distinct and total contributions to the specific electrolytical conduc-
tivity

• The same for the molar conductivity (based on total particle number - *2
for ILs)

• Based on that, the predicted Haven Ratio in this framework of theory.
Not very accurate unless you have absolutely insanely large trajectories.

The equations for electrolytical conductivity used in this code can be found in
[19]. Note that quite a large number of averages has to be taken to obtain
sensible values.

12

2.5 Custom Components of Velocity Correlation Func-
tions

(and electric current autocorrelation function) Unlike most other modules, this
one needs atomic VELOCITIES instead of coordinates. You are left to choose
the two molecule types to correlate freely. Additionally, you can choose to
compute self- or distinct contributions. A good reference is, for example, [9].
Requesting velocity correlation functions will compute the quantities in 〈...〉
brackets from equations (A6) to (A10) in [9] - i.e. not including the N , but
Ncat, Nan,... Requesting CACFs, however, will compute the quantities in 〈...〉
brackets from equation (3). Essentially they are the same, but weighted with
charges rather than 1/numbers. Important note: the distinct contributions are
extremely expensive to calculate. If possible at all, it is advisable to use the
RMM-VCFs, the ’conductivity simple’ keyword, or even the cross contributions
from the Einstein relation.

2.6 Mean (Squared) Displacement

Calculates the mean squared displacement including a drift correction.(PARALLELISED)
Other exponents can be chosen as well, e.g. for the mean fourth power dis-
placement 〈R4〉. Furthermore, there is the possibility to directly calculate the
non-gaussian parameter α2 and print it together with the mean squared dis-
placement. The diffusion coefficients thus obtained can be used for comparison
with the VACFs. Different projections can by chosen by which the displace-
ment vector is to be multiplied. This could be e.g. ’1 1 1’ (giving the ’standard’
3D diffusion coefficient), or something like ’0 0 1’ (which would give only the
component in z-direction). Two print levels are available. Default is to only
print:

• The mean squared displacement 〈R2〉

• The mean displacement 〈R〉

If the verbose print is requested, then the output additionally contains:

• Drift corrected mean squared displacement 〈R2〉 − 〈R〉2

• All three components of the drift vector, 〈x〉, 〈y〉, and 〈z〉

• The number of averages taken to obtain these values.

This module is thus a valuable tool to calculate diffusion when drift is present,
Figure 8, see also Reference [5]. A simple example for diffusion without drift
is shown in Figure 9.14 It is also possible to calculate the relative mean molecular
diffusion coefficients, using the corresponding Einstein relation.(PARALLELISED)
This is much more efficient than the velocity cross correlation coefficients, since
the trajectory does not need to be sampled as finely! For my systems, every few
picoseconds is fine, whereas the Green-Kubo relation requires sampling every
few fs, yet still requiring extremely long runs to converge (on the order of 100
ns).

13

10000 100000 1000000 1E7
1

10

100

1000
M

ea
n

Sq
ua

re
d

D
is

pl
ac

em
en

t (
A)

time (fs)

 <x2>-<x>2

 <y2>-<y>2

 <z2>-<z>2

Simulation of ionic liquid
with Electric field in z-direction

Figure 8: Drift-Corrected Mean Squared Displacement.

10-3 10-2 10-1 100 101 102 103 104 105
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

m
3kBT

(Dr)2 =6Dself t

(D
r)2

 /
Å2

time / ps

(Dr)2 = t2

ballistic

diffusive

intermediate

Figure 9: Mean squared displacement over 7 orders of magnitude, showing the
distinct ballistic and diffusive regions. Taken from Reference [14].

14

2.7 Average distances

Calculates the average closest distance between a reference atom and an ob-
served atom. Reference and observed atom can either be specific (i.e. a certain
molecule type index and atom index), or they can be of a certain type (such as
’H’ or ’F’). Two modi are available: intermolecular or intramolecular distances.
Also available are:

• exponentially weighted averaged distances (weighted with e−k∗r)

• distances used in FFC theory, using eq (6) and (13) in the ESI of Reference
[7].

• standard deviations of closest distances and exponentially weighted dis-
tances. We used these in Reference [1]

2.8 Coordination Species

Analyses the distribution/occurrence of certain coordination environments, and
calculates the intermittent binary autocorrelation function (for species lifetimes).(PARALLELISED)
To this end, acceptor and donor molecules are defined by their molecule type
and participating atoms. The program performs a separate analysis for each
acceptor, keeping track of all the donor molecules around it. A good example
is an electrolyte composed of Sulfolane (SL) and Li[TfNCN]. If we define the
lithium atom as acceptor, then the donor molecules would be sulfolane (via the
two oxygen atoms) and the [TfNCN]− anion (via the two oxygen atoms and
the one nitrile nitrogen atom). It is possible to tell prealpha which atoms are
grouped together, either by defining atom groups manually, or by automati-
cally grouping them by their element symbol. If they are grouped by elements,
then the most common species in our example electrolyte is the one shown in
Figure 10.∗

It is of course also possible to reverse the roles of acceptors and donors.
In this case, for the [TfNCN]− anion as acceptor and the lithium cation as
donor, the most probable species is the one shown in Figure 11. Of course, the
speciation depends on the choice of atoms and atom groups. For example, if the
O and N atoms of the (acceptor) [TfNCN]− anion are grouped together, then
a species with two lithiums in contact with one of the sulfolane-oxygens each
would be treated as the same as the one shown in Figure 11.

∗The coordination environment figures were prepared with VMD8 using the output from
prealpha. prealpha outputs the beads shown in the figure with the Atom Label ”Z”. To obtain
this type of figure in VMD, choose three representations: ”all not name Li and not name
Z”, ”name Li”, ”name Z”. Atoms drawn with CPK drawing method, Material AOChalky;
beads drawn with drawing method ”Dotted”, material Opaque, Ambient Occlusion turned
on in the display settings, rendered as .tga with ”Tachyon (internal, in-memory rendering)”
and converted to png with imagemagick. The colours are ”purple” for Li and ”lime” for F.
Orthographic projection with depth cueing turned off.

15

Figure 10: Most probable coordination environment of Li+ in [Li(SL)2][TfNCN],
observed in 21.7% of the cases.13

Figure 11: Most probable coordination environment of [TfNCN]− in
[Li(SL)2][TfNCN], observed in 59.0% of the cases.13

16

It is possible to request a binary intermittent autocorrelation function in
perfect analogy to the one shown in Equation 1. Thus, there are as many
binary identifiers h as there are species, plus an additional h for ”no species”.
The latter counts both acceptors which have no donors and acceptors for which
a species could not be assigned due to species overflows, hence in the latter case,
it is not reliable. h = 1 if a given molecule in a given timestep belongs to a
given species, and h = 0 otherwise. Figure 12 shows an example of such a set
of automatically calculated autocorrelation functions.

100 101 102 103 104

0.0

0.2

0.4

0.6

0.8

1.0

C
(t)

time / ps

Species number:
 #1 (29.1%)
 #2 (28.9%)
 #3 (11.4%)
 #4 (9.5%)
 #6 (4.0%)
 #7 (3.2%)
 other

Figure 12: Intermittent binary autocorrelation function for a variety of species.
The numbers in brackets give the occurrence. Here, the longest lived species
is also the most common one, but that is not always the case. Species can be
fleeting and common as well as uncommon and stable.13

17

2.9 Cluster Analysis

This module works similar to the cluster analysis in TRAVIS.4 In short, prealpha
iterates over a set of atoms, and identifies those which are closer than a certain
cutoff as belonging to the same cluster. On one hand, in the limit of a very
small cutoff, all atoms in the set are ’disconnected’ and thus form N atoms
monomeric clusters. On the other hand, in the limit of a very large cutoff,
all atoms are connected with each other, forming just one continuous cluster.
This is of course the case even for randomly distributed points. However, if
nanosegregation / heterogeneity / clustering is present, then there will be a
pronounced step in between, Figure 13. The cluster analysis in prealpha is
able to extract information about the differently sized clusters such as their
composition and occurrence, and can write .xyz files ready for visualisation.

Figure 13: Cluster count function for two different systems.17

18

3 Getting Started

3.1 First Steps

Start by cloning the directory:

git clone https://github.com/FPhilippi/prealpha.git

In the directory ’prealpha’, you can find the prealpha executable. You might
need to add execution rights:

chmod +x prealpha

That’s it already! You can now start using it. To get an idea of how the program
is constructed, start with the examples, e.g. with

./prealpha Drudes_xyz.inp Drudes_vel.inp

This will give you an idea of the output and the structure of the program. You
can also invoke the program without input file in the command line - it will
assume that the input file is named ’general.inp’. The user interface of the
program will be started if the current input file cannot be found.

If you want to compile prealpha yourself, please use a compiler that supports
OpenMP. For the GNU fortran compiler, set the corresponding flag:

gfortran pre-alpha.f03 -fopenmp

The code is designed to also run without that library, but is not as nice. Natu-
rally, compiling the code yourself is also the thing to do if the executable does
not run on your architecture. Do let me know if you have problems with that.

3.2 Simple Examples

3.2.1 Drude Particles

For Drude particles to be recognised by prealpha, they have to belong to the
same molecule type as their respective cores. This might need resorting of the
trajectory. Two example trajectories for [BMIM][NTf2] are given in the folder
’Example Drudes’ - one with cartesian coordinates and one with velocities. Two
general input files, ’Drudes vel.inp’ and ’Drudes xyz.inp’, can be found in the
parent directory where the executable is located. Both can be invoked from the
command line:

./prealpha Drudes_xyz.inp Drudes_vel.inp

The first input file assigns the Drude particles to their cores by checking closest
distances. In the example the Drude-atom distances are between 0.001 and 0.09
Angström. The Drude assignment is not possible for a trajectory that contains
velocities. Here, the Drude particles have to be assigned manually, as shown
in ’molecular VEL.inp’ in the ’Example Drudes’ folder. The required section

19

is conveniently printed when invoking ’show drude’ with cartesian coordinates,
as in ’Drudes xyz.inp’. Thus, the general approach is to make sure your Drude
particles are grouped with the right molecule, then run ’show drude’ with a
trajectory that contains cartesian coordinates, and either make changes to the
suggested assignment or directly use it in your molecular input file - including
for trajectories that contain velocities.

3.2.2 Estimating RAM

If you want to estimate how much RAM you need to store your entire tra-
jectory, you can use the output of ’show settings’, such as in the example
’Drudes xyz.inp’. Since sequential read of the trajectory is requested, the pro-
gram only reads the first step (there aren’t more in the example anyway), but
still calculates the required RAM for the whole trajectory. In the correspond-
ing molecular input file ’molecular.inp’ in the folder ’Example Drudes’, you
can see that 10000 steps were specified - this could be a trajectory of 10 ns,
dumped every 1ps, for example. When prealpha is invoked with the example
’Drudes xyz.inp’, the following lines are shown in the settings section:

Memory requirement for storage of entire trajectory in RAM:

3x30208x10000x4Byte = 3.4GB (single precision)

Since there are 90624 coordinates to store, each of them taking up 4 Byte of
RAM in single precision, this makes 3.4GB for the whole trajectory. Note that
the whole LAMMPS trajectory would take up about 13GB of RAM!∗

3.2.3 The BMIMTFSI example trajectory (xyz)

This trajectory - again - contains just one timestep. It is in xyz format, but
that’s not a problem since you can specifiy the box boundaries manually, as is
done in generalxyz.inp. This time, a warning will be printed, because prealpha
is not sure whether there are coordinates or velocities stored in the trajectory
due to the .xyz format. The input file is used for a few simple examples:

• Calculating the radius of gyration

• Dumping dimer structures

• Getting intra- and intermolecular contact distances.

• Demonstrating the coordination species module.

These analyses are in the generalxyz.inp input file in the parent directory. Invoke
with:

./prealpha generalxyz.inp

∗yes, I know, there is virtual memory and there is RAM, which is not the same.

20

The ’gyradius’ keyword also calculates the ensemble average of the maximum
distance of any atom in a specified molecule from the centre of mass. Note that
the contact distances are very expensive to compute - that’s why the code is
parallelised, and also ’commented out’ in the input file (Everything after a ’quit’
statement is ignored). If you want more sophisticated distance estimates, have
a look at the distance module which is a distince feature with its own input file.

Feel free to play around with the keywords! For example, instead of the
cation-anion dimers, try dumping anion-anion pairs with ’dump dimers T 1 1
1’, or try to print a snapshot of the whole box. Maybe also wrap the trajectory
before printing the snapshot!

3.3 The Input Trajectory File

The trajectory is expected to be in LAMMPS format, unless specified otherwise
(Contact me if you need a different format to be read in). For each timestep,
there is a header and a body. The header in LAMMPS format should look like
this:

ITEM: TIMESTEP

0

ITEM: NUMBER OF ATOMS

20480

ITEM: BOX BOUNDS pp pp pp

0 63.9223

0 63.9223

0 63.9223

ITEM: ATOMS element xu yu zu

After this follows the body, consisting of one line per atom. Each line begins with
the element label (e.g. ’C’), followed by three floating point (=real) number.
Depending on the type of analysis you need, these have to be either Cartesian
coordinates or velocities. For coordinates, your LAMMPS input file should
include something like:

dump TRAJECTORY all custom 1000 trajectory.lmp element xu yu zu

dump_modify TRAJECTORY element C F N O S C C C C H H N sort id

whereas for velocities, ’xu yu zu’ has to be changed to ’vx vy vz’. To obtain
sensible results, consistent ordering is imperative. This is the purpose of the
second line given in the example above. Important final note: For performance
reasons, the format is not checked during read!

3.4 Molecule Recognition Module

You will get fed up quickly with writing molecular input files, especially if you
have many different trajectories. However, there is a way to automatically write
those. You need to specify ’-r’ in the command line, immediately followed by
your trajectory file. For example:

21

./prealpha -r./somedirectory/sometrajectory.lmp

or

./prealpha -rsometrajectory.lmp

... will try to recognise molecules in ’sometrajectory.lmp’. Only the very first
step of the trajectory is used, and LAMMPS format is mandatory (the box
volume is required for Periodic Boundary Conditions). If you have very big
molecules the molecule recognition might fail, because there is this one vari-
able that speeds up things. Let me know if you have issues and I’ll change it.
However, keep in mind that I originally made the recognition module for debug
purposes only - it is not even remotely optimised, and eats a lot of virtual mem-
ory. TRAVIS is much better written in that respect.3 Also, in later versions,
you can leave a space:

./prealpha -r sometrajectory.lmp

The molecular input files are written in the same directory as the trajectory, i.e.
in ’./somedirectory/’ in the first example. That way, you can leave prealpha in
one place.

3.5 High Performance Computing

If you’re running prealpha on your favourite supercomputer, you might want
to make use of parallelisation. It is strongly advised to load the trajectory
into RAM, as almost all involved calculations become prohibitively slow if the
sequential read is used. prealpha requires an absolute minimum amount of RAM
to store the trajectories - see the ’estimating RAM’ section in ’Examples’ in this
wiki on a short guidance how to calculate the required RAM.

Finally, when you have loaded your trajectory in the RAM, you might want
to try the parallelisation. Let’s say you work on a node with 48 cores, and you
have four trajectories to analyse. Before invoking prealpha (e.g. in your PBS
script), you should set the corresponding environment variable to the desired
number of cores, in our case 48/4=12:

export OMP_NUM_THREADS=12

It is good practise to always set this variable, and in addition, use the keywork
’set threads’. If you’re lazy, you can always add ’set threads 0’ to your gen-
eral input file, as this will lead to prealpha taking all the threads specified in
OMP NUM THREADS.∗

∗You can also use set threads simple

22

After that, you can invoke four instances of prealpha, and - if you want -
redirect their output to certain output files. To achieve this, you can use the
’-d’ command line argument of prealpha - if any of the command line arguments
is -dsomestring, then the output from unit 6 (standard output) is redirected to
a file named ’somestring’. In our example case, you could use this in your PBS
/ bash script:

./prealpha general1.inp -d./output1/FORTRANLOG &

./prealpha general2.inp -d./output2/FORTRANLOG &

./prealpha general3.inp -d./output3/FORTRANLOG &

./prealpha general4.inp -d./output4/FORTRANLOG &

wait

... which redirects the output into files called ’FORTRANLOG’ in the folders
output1 to output4. Ideally, these would be specified as output directory in the
input files general1.inp to general4.inp, respectively. Of course you can also run
the analysis one after another, on all 48 cores each. This will be a bit more
efficient if the four jobs are very different:

export OMP_NUM_THREADS=48

./prealpha general1.inp -d./output1/FORTRANLOG

./prealpha general2.inp -d./output2/FORTRANLOG

./prealpha general3.inp -d./output3/FORTRANLOG

./prealpha general4.inp -d./output4/FORTRANLOG

23

4 Input Files

The general and molecular input files are required in any case by the main
program. Depending on the desired calculation, a separate input file might be
required.

4.1 General Input File

The ’general.inp’ file is the main input file, located in the same folder as the
executable. It is possible to specify other names for the general input file as
command line arguments. When multiple general input files are specified, they
will be invoked subsequently. If the file / one of these files isn’t found, then the
program switches to user input. It is read line wise, with the first 5 lines being
reserved (and strictly fixed). The content of these lines is, in this order:

1. the filename of the trajectory, e.g. ’trajectory.lmp’

2. the name of the molecular input file, e.g. ’mymolecule.inp’

3. Path to the trajectory

4. Path to the input files other than the general and molecular input files.

5. Output folder path

Path names have to be enclosed in quotes. The body of ’general.inp’ is read
line-wise, and the program finishes when either ’quit’ or the end of file is en-
countered. Each line contains a switch or keyword, followed by an argument (if
required). Only the necessary information is read from any line, with the rest
being ignored. Be aware that keywords affect only the lines below them. This
is with the exception of sequential read, trajectory type, unwrap trajectory and
wrap trajectory. These latter three act on the whole analysis, no matter where
specified. Only their first occurence matters - everything afterwards is ignored.
An incorrectly formatted ’general.inp’ is not tolerated (read the error messages).
For many switches, a simple mode that doesn’t require additional input is avail-
able. The simple mode is requested by appending ’ simple’ to the switch, e.g.
’gyradius simple’. Available switches are: (case-sensitive, everything is lower-
case)

• ’sequential read’: If true ’T’, then the trajectory is read line by line. This is
slow, but requires only the minimum amount of RAM. Not recommended
for parallelised analyses like mean-squared displacement and VACFs. If
false ’F’, then the whole trajectory is read into RAM. This is the first
switch that affects every line, not just the ones after it.

• ’trajectory type’: Expects either ’xyz’ or ’lmp’ as string input. This is the
second switch that affects every line, not just the ones after it.

24

• ’wrap trajectory’: Expects one logical. If ’T’, then molecules are wrapped
into the box. (based on their centre of mass. Might not be sensible for
some analyses.) This is the third switch affecting every line.

• ’unwrap trajectory’: Expects one logical. If ’T’, then molecules are un-
wrapped, i.e. the molecules are translated to minimise the jump distance
between subsequent timesteps. ’unwrap trajectory’ is only available with
’sequential read F’. unwrapping is performed based on centre of mass, only
works if jumps are smaller than half the box length. This is the fourth
switch affecting every line.

• ’parallel operation’: Turns parallelisation on (T) or off (F). Parallelisation
is only available with ’sequential read F’

• ’set threads’: (simple mode available) Sets the number of threads to use.
’set threads simple’ uses all available threads.

• ’error output’: Turns error output on (T) or off (F).

• ’time scaling’: Takes an integer value, by wh ich the timestep is multiplied.
For example, specify ’time scaling 1000’ if your trajectory is dumped every
1000 fs, and your output time unit will be fs as well.

• ’set prefix’: The specified prefix is prepended to the output files. Useful
if, for example, the dihedral analysis is specified multiple times.

• ’dump example’: Writes an xyz file of every specified molecule type into
the output folder. Can be used to extract the atom numbers for the
dihedral analysis.

• ’dump snapshot’: (simple mode available) Expects an integer and a logical
and dumps the specified timestep as .xyz file. If the logical is ’T’, then
every molecule is written into a separate file.

• ’dump split’: (simple mode available) Splits the trajectory into separate
files for every molecule type (centred to centre of mass!). Expects two
integers: the first timestep and the last timestep.

• ’dump single’: Writes a trajectory containing just one single molecule.
This keyword expects a logical, followed by four integers in the same line:
If the logical is ’T’, then the molecule is centred to its centre-of-mass. The
first and second integers specify the first and last timestep to write. The
third and fourth integers are the molecule type index and the molecule
index, respectively.

• ’dump full gro’,’dump full xyz’,’dump full lmp’: Writes the whole trajec-
tory to GROMACS, xyz, or LAMMPS format, respectively.

25

• ’slab x’, ’slab y’, ’slab z’: Any of these commands writes an xyz file con-
taining a slab where the x, y, z directions are normal to the slab plane,
respectively. The slab is positioned in the middle of the box, and wrapping
is automatically performed molecule wise. This switch requires two inte-
gers: First the timestep to export, and second the molecule type index.
The molecule type index can also be −1, in which case all molecule types
are considered. Note that any molecule is exported which has any atom
with a position higher than the lower boundary plane AND lower than
the higher boundary plane - in the current implementation, both bound-
ary planes are set to the middle of the box boundaries in the respective
dimension.

• ’contact distance’: (simple mode available) Reports the smallest intra-
and intermolecular distances and the largest intramolecular distance. This
keyword expects two integers as input: the timestep to analyse and the
molecule type index. If a molecule type index of 0 is specified, then all
molecule types are considered.

• ’dump cut’: Like dump single - but the surrounding molecules are also
written. This keyword expects a logical, followed by four integers and one
real in the same line: If the logical is ’T’, then the molecule is centred to its
centre-of-mass in every step. The first and second integers specify the first
and last timestep to write. The third and fourth integers are the molecule
type index and the molecule index, respectively. The real number defines
the cutoff for centre-of-mass distance for exporting molecules. Note that
the properly wrapped mirror images of the closest encounters are given.

• ’dump dimers’ Dumps the closest molecule of type X around all molecules
of type Y for a certain timestep. Expects a logical, followed by three
integers. If the logical is (T), then the output is combined in a single
’trajectory’-like xyz file. Otherwise (F), one output file is written per
dimer. The first integer is the timestep. The following two integers are
the types Y and X, respectively

• ’dump neighbour traj’: (simple mode available) Dumps the N closest molecules
of type X around a certain molecule M of type Y as trajectory. This key-
word expects six integers: The first and second integers specify the first
and last timestep to write. The third and fourth integers are the molecule
type index Y and the molecule index M, respectively. The fith integer is
the integer of the neighbour molecule to consider The last integer is the
number of neighbours to write.

• ’cubic box edge’: this keyword expects two real values, the lower and
upper bounds of the simulation box. i.e. ’cubic box edge 0.0 100.0’ cor-
responds to a cubic box with side length 100.0 Angströms useful if e.g.
dump cut is used with a xyz trajectory.

26

• ’convert’: (simple mode available) converts the given trajectory to a centre-
of-mass trajectory (per specified molecule type). i.e. only the centres of
mass for the molecules are printed instead of the atoms. This keyword ex-
pects a logical. If (T), then a new, modified molecular input file is written
as well.

• ’convert coc’: converts the given trajectory to a centre-of-charge trajec-
tory (per specified molecule type). i.e. only the centres of charge for the
molecules are printed instead of the atoms. This keyword expects a log-
ical. If (T), then a new, modified molecular input file is written as well.
Requires atomic charges to be properly initialised.

• ’temperature’: (simple mode available) Computes the instantaneous tem-
perature of a particular molecule type. This keyword expects exactly
three integers: The molecule type index, and the range of analysis, given
as first step and last step. If a molecule type index of 0 is specified, then
all molecule types are considered.

• ’drude temp’: (simple mode available) Computes Drude, centre of mass,
and total temperature of the whole box. This keyword computes equation
(13), (14) and (15) in Reference [18]. Support of Drude particles requires
the Drude particles to be read in manually, since the automatic Drude
particle assignment is only available for position trajectories. This key-
word expects exactly two integers: The range of analysis, given as first
step and last step.

• ’remove drudes’: (simple mode available) writes a new trajectory, with
Drude particles merged into their respective cores. (requires assigned
Drude particles, either manually or automatically) This keyword expects
exactly two integers: The range of analysis, given as first step and last
step.

• ’remove cores’: (simple mode available) writes a new trajectory only with
Drude particles minus the positions of their respective cores. (requires
assigned Drude particles, either manually or automatically) This keyword
expects exactly two integers: The range of analysis, given as first step and
last step.

• ’gyradius’: (simple mode available) Computes the ensemble averages and
standard deviations of radius of gyration, radius of gyration squared, and
maximum distance of any atom in a molecule from its centre of mass. This
keyword expects exactly three integers: The molecule type index, and the
range of analysis, given as first step and last step. If a molecule type index
of 0 is specified, then all molecule types are considered. The result will
look something like this:

<gyradius> 0.3326E+01, stdev = 0.870E-01

<gyrad**2> 0.1107E+02, stdev = 0.579E+00

<maxdist> 0.6159E+01, stdev = 0.252E+00

27

The cornered brackets denote the ensemble average, the results are re-
ported in the same unit as the input trajectory - ideally Ångström. The
squared radius of gyration and radius of gyration of a molecule are defined
in Equation 2 and Equation 3, respectively. Here, mi is the mass of atom
i in the molecule, and ri is the distance of the atom from the centre of
mass of the molecule. The sums run over all atoms in the molecule.

Rgy2 =

∑
imir

2
i∑

imi
(2)

Rgy =

√∑
imir2i∑
imi

(3)

• ’jump velocity’: (simple mode available) Computes a histogram / proba-
bility distribution of jump velocities. This keyword expects exactly three
integers: The molecule type index, the range of analysis, given as first
step and last step, and the maximum jump length / shift given as number
of timesteps. If a molecule type index of 0 is specified, then all molecule
types are considered.

• ’show settings’: Writes settings and useful information to the standard
output

• ’print atomic masses’: Writes atomic masses to the standard output, using
the molecular input file format.

• ’print atomic charges’: Writes atomic charges to the standard output, us-
ing the molecular input file format.

• ’print dipole statistics’: outputs average/minimum/maximum/standarddev
of dipole moment for the first timestep. for charged molecules, the vector
from center of mass to center of charge is used.

• ’show drude’: Writes detailed current information about Drude particles.

• ’switch to com’ Irreversibly switches to the barycentric reference frame.
i.e. for all analyses below this keyword, the box’ centre-of-mass is removed
in every step. (cannot be turned off again, until the program switches to
the next general input file)

• ’conductivity simple’ This is a special keyword that computes the overall
electrical conductivity of the whole system. It uses the autocorrelation
module, but is much faster than the CACFs.

• ’verbose output’: Turned on (T) by default. If (F), then only very limited
output is obtained.

• ’time output’: Turns the timing on (T) or off (F).

• ’quit’ Terminates the analysis. Lines after this switch are ignored.

28

These keywords require separate input files (explained below):

• ’conductivity’ (requests feature ’cacf components’ or ’conductivity simple’)

• ’velocity’ (requests feature ’vcf components’)

• ’rmm-vcf’ (requests feature ’Relative Mean Molecular Velocity Correlation
Coefficients’)

• ’diffusion’ (requests feature ’Mean Squared Displacement’) (two simple
modes available, ’diffusion simple’ and ’alpha2 simple’)

• ’dihedral’ (requests feature ’Dihedral Conditions’)

• ’reorientation’ (requests feature ’reorientational time correlation’)

• ’distribution’ (requests feature ’polar/cylindrical distribution function)
(simple mode available - ’charge arm simple’ to calculate the charge arm
distribution, ’clm simple’ for the charge lever moment distribution, and
’distribution simple’ to calculate sum rules and the coulomb interaction
energy)

• ’distance’ (requests feature ’Average distances’) (simple mode available)

• ’speciation’ (requests the speciation analysis)

• ’cluster’ (requests the cluster analysis)

4.2 Molecular Input File

This file contains information about the system, located in the same folder
as the executable. The first line is the number of timesteps, followed by the
number of molecule types in the second line. For every molecule type, the
following information is read: Charge - Number of atoms per molecule - number
of molecules. The program expects as many lines as there are molecule types.
Following this fixed section, the rest of the input file is read (Until either a ’quit’
statement or the end of file are encountered). In this free-format section, the
following optional subsections can be placed:

• ’default masses’: this keyword triggers the specification of custom default
masses. it expects an integer, which is the number of subsequent lines to
read. This is available for single lowercase letters (a,b,c,...,z) and element
names. (Including ’X’ and ’D’, which are treated as Drude particles) If
e.g. the trajectory contains an anion of mass 123.4, abbreviated as ’a’,
and a cation of mass 432.1, abbreviated as ’c’, then this section should be
added:

masses 2

a 123.4

c 432.1

29

Furthermore, the support of Drude particles can be turned on by adding:

masses 1

X 0.4

Note that Drude particle masses are subtracted from N,O,C,S,P,Li,F,Mg,Cl,Ca,Zn
- but not Hydrogen. This keyword changes the defaults, i.e. ALL atoms
of type a,X,P,... see also:

• ’atomic masses’: This keyword triggers the specification of custom atomic
masses. it expects an integer, which is the number of subsequent lines to
read. each line must have two integers and one real: molecule type index,
atom index, and atomic mass. This allows the user to specify atomic
weights, which can be misused to work with centres of charge rather than
centres of mass.∗ The order is important:

1. The program starts with its own defaults, such as 12.011 for carbon.

2. If necessary, these values are changed by ’default masses’ - this changes
all masses for one element type.

3. Any positive Drude mass ’X’ or ’D’, if present, is subtracted from
N,O,C,S,P,Li,F,Mg,Cl,Ca,Zn.

4. After that, masses of particular atoms are overwritten by ’atomic masses’.

• ’default charges’ and ’atomic charges’ These two keywords can be used to
specify atomic charges. Their syntax follows that of the keywords ’de-
fault masses’ and ’atomic masses’, respectively (With the exception that
lowercase letters are not accepted). The order is as follows:

1. The program starts with its own default charge - 0.0 for every atom.

2. If necessary, these values are changed by ’default charges’

3. Charges of particular atoms are overwritten by ’atomic charges’.

• ’constraints’: This keyword triggers the specification of custom constraints.
It expects an integer, which is the number of subsequent lines to read.
Each of these subsequent lines has to contain two integers: First, the
molecule type index, and second, the number of constraints. This influ-
ences how temperature is computed.

• ’Drudes’: This keyword is used to manually assign Drude particles to their
respective core. It expects an integer, which is the number of subsequent
lines to read. Each Drude particle is assigned by giving three integers (per
line): The molecule type index - atom index core - atom index Drude.†

∗Note that the emphasis is on ’misused’. It does make sense in some cases, for example
for the Coulomb interaction energy, which is more accurate if the centres of charge are used
rather than the centres of mass. However, modules that need atomic charges (in addition to
atomic masses) will make use of the appropriate keyword, ’atomic charges’

†see also ’show drude’, which prints this input section. If you have Cartesian coordinates,
then the Core-Drude assignment will be automatic - I did not have problems with that so far.

30

4.3 Relative Mean Molecular Velocity Correlation Input
File

The two molecules to correlate have to be given in the first line. ’rmm-vcf’ is
given in the second line, indicating the type of analysis. Switches are read from
the following lines. Available are:

• ’tmax’: Expects an integer, which is then taken as the maximum number
of steps into the future for the autocorrelation function (the shift, so to
say).

• ’skip autocorrelation’: If yes (T), then only the cross-contributions are
calculated.

• ’sampling interval’: Expects an integer. Every so many steps will be used
as origin to compute self-contributions. These are usually computationally
more expensive, but need less averaging. Note that the printed tcf will
always have the same time resolution as the trajectory.

• ’quit’ Terminates the analysis. Lines after this switch are ignored.

4.4 Custom Velocity Correlation AND CACF Components
Input File

The first line gives the operation mode, followed by the number of custom com-
ponents. The operation mode is either ’vcf’ or ’cacf’. The custom components
are specified below, one per line. Each line must contain, in this order:

1. the molecule type index of the first, reference molecule

2. the molecule type index of the second, observed molecule

3. ’T’ if self contributions are to calculate, and ’F’ for distinct contributions.

Thus, the following 7 lines specify every unique vcf in a system with two con-
stituents:

vcf 6

1 1 T

1 1 F

1 2 F

2 1 F

2 2 T

2 2 F

(note that ’1 2 F’ and ’2 1 F’ are redundant and will/should give the same value)
Switches are then read from the following lines. Available are:

• ’tmax’: Expects an integer, which is then taken as the maximum number
of steps into the future for the autocorrelation function (the time shift).

31

• ’sampling interval’: Expects an integer. Every so many steps will be used
as origin of the correlation functions. Note that the printed tcf will always
have the same time resolution as the trajectory.

• ’quit’ Terminates the analysis. Lines after this switch are ignored.

A rule of thumb as final remark: everything with an ’F’ will be very, very, very
slow. This is because the double sum over every distinct particle is evaluated. It
is possible (and a lot faster) to just calculate the overall electrical conductivity.
To request this, just put ’conductivity’ in the first line. Also, have a look at the
cross-correlations obtained from mean squared displacements, i.e. the Einstein
Relation equivalent of the RMM-VCFs.

4.5 Diffusion Input File for Self Diffusion

The first line contains the expression ’msd’, followed by the number of projec-
tions N.∗ The latter are read from the following N lines. The format of each
line is: x - y - z - number of the molecule type. For the ’standard’ 3D diffusion
of molecule type 2, the line would thus be ’1 1 1 2’. After the projections have
been specified, switches can be specified in an arbitrary order. Available are:

• ’tmax’: Expects an integer, which is then taken as the maximum number
of steps into the future for the mean squared (or whatever exponent you
want) displacement.

• ’tstep’: The given integer is taken as the step size. i.e. if ’tstep 10’ is
specified, then only shifts by 1,10,20,...,tmax are computed.

• ’print verbose’: If yes (T), then the detailed drift is printed, too.

• ’exponent’: Expects an integer, which is used as exponent in the displace-
ment. Thus, ’exponent 2’ is the normal MSD, but others can be used,
too.

• ’quit’ Terminates the analysis. Lines after this switch are ignored.

4.6 Diffusion Input File for Cross Diffusion

The first line contains the expression ’cross’, followed by the number of projec-
tions N. The latter are read from the following N lines. The format of each line
is: x - y - z - number of the first molecule type - number of the second molecule
type. To get the cross diffusion between the first two molecule types, the line
would thus be ’1 1 1 1 2’. This calculates Equation (B5) in Reference [19], but
not including the dimensionality factor d.† Specifically, prealpha will output Q

∗’alpha2’ can also be used instead of msd. note that while projections other than 1-1-1
are allowed, they will give a wrong alpha2.

†which is 1/3 in the case of three dimensions, giving Equation (B5) in Reference [19]. If,
instead of the three dimensional projection ’1 1 1 1 2’, a one-dimensional projection such as
’1 0 0 1 2’ along the x-axis is used, then the prefactor is 1.

32

in Equation 4, from which the corresponding Diffusion coefficient can easily be
obtained via Equation 5. As with any calculation of diffusion coefficients, it is
also here advisable to calculate the x-y-z projections separately to be able to
check for divergence due to insufficient sampling.

Qab =
{
N
〈
|(~xa(t)− ~xb(t))− (~xa(0)− ~xb(0))|2

〉}
(4)

Dab = lim
t→∞

d

dt

Q

2d
(5)

~xa(t) =
1

Na

∑
i∈a

~xi(t) (6)

The mean molecular positions ~x are calculated over all molecules of that type
averaged over the simulation box, Equation 6. After the projections have been
specified, switches can be specified in an arbitrary order. Available are:

• ’tmax’:Expects an integer, which is then taken as the maximum number
of steps into the future for the mean squared displacement.

• ’tstep’: The given integer is taken as the step size. i.e. if ’tstep 10’ is
specified, then only shifts by 1,10,20,...,tmax are computed.

• ’exponent’: Expects an integer, which is used as exponent in the displace-
ment. Thus, ’exponent 2’ is the normal MSD, but others can be used,
too.

• ’quit’ Terminates the analysis. Lines after this switch are ignored.

4.7 Distribution Input File

(Simple modes available: ’charge arm simple’ to calculate the charge arm dis-
tribution, ’clm simple’ for the charge lever moment distribution, and ’distribu-
tion simple’ to calculate sum rules and the coulomb interaction energy.) The
first line contains the expression ’cdf’, ’pdf’ or ’charge arm’, followed by the
number of references N. ’cdf’ requests the cylindrical distribution function, ’pdf’
requests the polar distribution function. ’charge arm’ requests a polar distri-
bution function of the charge arm (ions) or dipole moment (neutral molecules).
The references are read from the N lines following the first line. The format of
each line is: x - y - z - number of reference molecule type - number of observed
molecule type. For molecule type 1 around 2 relative to z-direction, the line
would thus contain ’0 0 1 2 1’. a ’zero’ reference vector, i.e. ’0 0 0’, triggers
the randomisation of the reference vector. If the molecule type of the observed
molecule is -1, then *all* molecule types are used. Note that for ’charge arm’,
only one molecule type is required - no observed molecule type is required, only
the reference type. The charge arm pdf is NOT corrected for azimuthal or radial
parts - only polar. After the projections have been specified, switches can be
specified in an arbitrary order. Available are:

33

• ’bin count’: Expects an integer, which is then used as bin count for both
independent variables.

• ’bin count a’: Expects an integer, which is then used as bin count for
variable a).

• ’bin count b’: Expects an integer, which is then used as bin count for
variable b).

• ’maxdist’: Expects a real value, which is taken as the cutoff distance of
molecule pairs to be considered.

• ’maxdist optimize’: sets ’maxdist’ to half the box size where available.
doesn’t need additional input values. for charge arm and dipole moment
analyses, ’maxdist’ will be set to the maximum value in the first timestep.
(considering all molecule types specified as references, rounded to 1 digit)

• ’subtract uniform’ If yes (T), then the uniform density / radial distribution
function is subtracted. Only available for the polar distribution function.

• ’weigh charge’ The charges of observed molecules are added to the distri-
bution histogram, rather than unity.

• ’normalise CLM’ The charge arm is divided by M · Rgy2 (charge lever
moment correction).10 Here, M is the mass of the molecule, and Rgy is
the radius of gyration. Only available for the charge arm distribution
function.

• ’center of charge’ Uses centres of charge instead of centre of mass. Needs
atomic charges to be specified. For molecules with a total charge of zero,
the dipole moment will be used, which might yield unexpected results.

• ’sampling interval’ Expects an integer. Every so many steps are used for
the analysis.

• ’quit’ Terminates the analysis. Lines after this switch are ignored.

4.8 Dihedral Input File

The molecule type index (= the molecule to observe) is given in the first line.
The expession ’dihedrals’, followed by the number of dihedral conditions, in the
2nd line. For every dihedral condition follows one line, giving the atoms (in that
molecule) which are part of the dihedral, as well as the lower and upper bound.
’1 2 3 4 0.0 90.0’ thus means that dihedral 1-2-3-4 has to be between 0 and 90
degrees. Important: dihedrals are defined from 0.0° to 360.0°. ALL specified
conditions have to be fulfilled simultaneously for the h operator to become true.
After the condition section, the following switches may follow:

• ’tmax’: Expects an integer, which is then taken as the maximum number of
steps into the future for the intermittent binary autocorrelation function.

34

• ’export’: Requires one integer (the index of the molecule) as input. All
specified dihedrals for this particular molecule will be exported in an out-
put file. Note that ’export’ can be specified more than once!

• ’fold’: If true (T), then apart from the dihedrals being in the range a to
b, also check for the range (360-b) to (360-a).

• ’dump verbose’: If true (T), then also report PES subset population and
〈h〉 as a function of the timestep. Also check for the range (360-b) to
(360-a).

• ’skip autocorrelation’: If true (T), then the actual autocorrelation analysis
is skipped. This is useful if only the PES is required.

• ’bin count’: Sets the bin count to the specified integer. e.g. ’bin count 36’
equals to binning in steps of 10°.

• ’jump analysis’ Performs an analysis of average jump velocities as a func-
tion of: a) The number of changes between fulfilment/non-fulfilment of
the dihedral condition b) The share of fulfilled dihedral conditions over
the specified jump time. Requires one integer, i.e. the desired jump time
(in number of timesteps). It is possible to request multiple jump analyses
in one dihedral input file.

• ’quit’ Terminates the analysis. Lines after this switch are ignored.

4.9 Reorientation Input File

The molecule type index (= the molecule to observe) is given in the first line.
The expession ’reorientation’ in the second line to request the appropriate anal-
ysis. For the reorientation analysis, the user has the choice between two vectors:

1. The vector from a base fragment to a tip fragment. Both *must* be
defined as outlined below.

2. the charge arm or dipole moment vector. This required atomic charges
(cf. molecular input file)

Regarding method 1): A fragment is defined by the expression ’base’ or ’tip’,
followed by the number of atoms in this fragment. The immediately following
line must contain a list of the atom indices in this fragment. For example,
these lines define atom 16 as the base fragment and atoms 1, 3 and 4 as the tip
fragment:

base 1

16

tip 3

3 1 4

35

The two fragments must appear before the quit statement (if applicable). Method
2) only requires ’charge arm’ or ’dipole’, but no further input (apart from the
atomic charges). The following switches may be used as well:

• ’tmax’: Expects an integer, which is then taken as the maximum number
of steps into the future for the time correlation function.

• ’legendre’: Expects an integer, which defines the order of the legendre
polynomial to use.

• ’sampling interval’: Expects an integer. Every so many steps will be used
as starting point for the tcf. Note that the printed tcf will always have
the same time resolution as the trajectory.

• ’export’: Requires one integer (the index of the molecule) as input. The
orientation evolution for this particular molecule will be exported in an
output file, containing timestep, unit vector, vector length, angle and
Pl[u(0)u(t)]

4.10 Distance Input File

The first line must state the type of analysis, i.e. either ’intramolecular’ or
’intermolecular’, followed by the number of subjobs as an integer. The following
lines, one for each subjob, describe which atoms are reference and observed
atoms. For intramolecular analysis, you need to specify one of these for every
subjob:

• Three integers: the molecule type index and the two atom indices for
reference and observed atom, for example ’3 1 2’ calculates closest in-
tramolecular distances for the atoms with indices 1 and 2 in molecule
type 3.

• two integers and an element name, acting as wildcard. The program will
automatically consider all atoms of that type, for example ’3 1 H’ uses all
H atoms in molecule type 3 as observed atoms.

• two element names, such as ’H H’. Note that this type of analysis averages
over all possible intramolecular combinations, if you have more than one
molecule type containing hydrogen atoms then you will obtain an average
over all of these.

The same principles apply for intermolecular distance analyses, only that the
second molecule type index needs to be given:

• Four integers: the molecule type index and atom index for the reference
atom and the molecule type index and atom index for the observed atom.
Note that even if the molecule type indices are the same, the analysis is
still intermolecular - and thus makes only sense if there are at least two
molecules of that type.

36

• two integers and an element name, acting as wildcard. The program will
automatically consider all atoms of that type, for example ’3 1 H’ uses all
H atoms in all molecule types as observed atoms.

• two element names, such as ’H H’. Note that this type of analysis averages
over all possible intermolecular combinations.

After the subjob section, the following switches may follow:

• ’quit’ Terminates the analysis. Lines after this switch are ignored.

• ’maxdist’: Expects one real number, which is the maximum distance /
cutoff to consider.

• ’maxdist optimize’: sets the cutoff to half the box size.

• ’nsteps’: Followed by one integer, which is interpreted as the highest
timestep number to consider.

• ’sampling interval’: Expects one integer - the sampling interval, i.e. every
this many steps of the trajectory will be used.

• ’ffc’: expects a logical (’T’ or ’F’). If ’T’, then the average distances used
for FFC are calculated, i.e. dHH and rHH depending on the operation
mode. Note that this average does not converge, which is not my fault.

• ’calculate exponential’: expects a logical (’T’ or ’F’). If ’T’, then the
weighted average distances are also calculated. the weights are exp(-kr),
where r is the distance and k is a constant defaulting to 1.

• ’exponent’: sets the exponent ’k’ for the exponentially weighted average.

• ’standard deviation’: expects a logical (’T’ or ’F’). If ’T’, then the stan-
dard deviation is - where reasonable - calculated.

It is easiest to just use the simple mode by adding ”distance simple” to the
general input file. This will prepare input files and run the analysis on the fly,
assuming that only Hydrogen and Fluorine - where present - are the nuclei of
interest. The typical output looks something like this:

Done with intramolecular distance calculation. Results:

Subjob #1 out of 1:

30 H atoms -> 30 H atoms.

Used 15360 reference atoms per step.

average closest distance: 1.734

standard deviation: 0.053

exponentially weighted distance: 2.705

standard deviation: 0.211

FFC distance rHH: 2.773

exp(-kr) weighted FFC distance r’HH: 2.015

Number of averages for FFC: 0.445E+07

37

For the simple analysis, all other hydrogen atoms in the molecule (intramolecu-
lar) or all other hydrogen atoms in other molecules (intermolecular) are consid-
ered. The ”average closest distance” finds the closest other hydrogen atom in
the set for each of the hydrogen atoms, and then takes the average of the closest
distances. The exponentially weighted average uses a weighing function e−kr

to calculate the weighted average. For the use with fast field cycling (FFC),
Equation 7 (intramolecular) and Equation 8 (intermolecular) are used.

rHH =

(∑
i 6=j wijr

−6
ij∑

i 6=j wij

)−1/6
(7)

dHH =

(∑
i 6=j wijr

−3
ij∑

i 6=j wij

)−1/3
(8)

The weighing factor wij is either 1 (rHH and dHH in the output above) or
wij = e−krij (r’HH and d’HH in the output above).

4.11 Coordination species input file

In this input file, you need to first specify the acceptors, then the donors, then
you have some free-format body for additional input. The first line must give
the number Nacceptor of acceptor atoms. The following Nacceptor lines must have
two integer values followed by one real number. The two integers are molecule
type index and atom index, respectively. The real number is a cutoff specific
for this atom. After the acceptors are specified, the donors are specified in the
same way, i.e. the integer Ndonor followed by Ndonor lines of molecule type
index - atom index - cutoff for the donors. Acceptor and Donor can also be
the same molecule type, and each can have more than one atom - although
the total number of atoms involved should be kept small. The input for the
analysis of the BMIMTFSI example trajectory contains such an example input
file ’species cation.inp’.

Important: you can specify several different molecule types as acceptors, but
they will be automatically treated as separate analysis, while donor molecules
are always kept together. For the example [Li(SL)2][TfNCN], this means the
following. If you specify SL and [TfNCN]− as donors and Li+ as acceptor, then
you get species like lithium coordinated by two anions and two sulfolanes, etc..
However, if you specify SL and [TfNCN]− as acceptors and Li+ as donor, then
you will get one set of speciation statistics for the coordination of Li+ around
[TfNCN]−, and a separate set for the coordination of Li+ around SL.

The cutoffs are evaluated pair wise. If two atoms are closer than the sum of
their cutoffs, then they are considered to be connected. I personally prefer to
set one atom to zero and choose the minimum of the atom-atom RDF as the
cutoff for the second atom.

38

Finally, in the free-format body, the following switches may follow:

• ’quit’ Terminates the analysis. Lines after this switch are ignored.

• ’nsteps’: Followed by one integer, which is interpreted as the highest
timestep number to consider.

• ’sampling interval’: Expects one integer - the sampling interval, i.e. every
this many steps of the trajectory will be used.

• ’maximum number of species’: Expects one integer, which will be the
maximum number of species that will be observed and printed. Beyond
this number, species are not added to the list, but prealpha will keep
track of them and report the extent of this ”species overflow”. This is
not a problem as long as you are not interested in these less frequently
occurring species. However, note that prealpha enqueues the species by
the order it finds them in the trajectory. If an ”interesting” species is
found later on, after all species entries are filled, it will not be considered.
This also means that you should not interpret species which have a lower
occurrence than the relative amount of species overflow.

• ’N neighbours’: Expects one integer - this is the maximum number of
neighbours/connections up to which the program keeps track. If a ”Neigh-
bour overflow” (Error number 160) occurs, then the results will be biased,
and N neighbours needs to be increased.

• ’print beads’: expects a logical (’T’ or ’F’). If ’T’, then a number of evenly
spaced beads are added to the output between pairs of atoms which are
connected within the analysis framework.

• ’new acceptor group’ and ’new donor group’: these switches expect one
integer, which is the molecule type index, and make a new group for ac-
ceptors or donors, respectively - see also the next item.

• ’assign to acceptor group’ and ’assign to donor group’: This switch ex-
pects an integer, which is the atom index. This atom index is then con-
sidered part of the current group. For example, the following three lines
group the two atoms with atom indices 3 and 6 for the molecule type 2
together:

new_acceptor_group 2

assign_to_acceptor_group 6

assign_to_acceptor_group 3

• ’group elements’: doesn’t need any other input. If this switch is encoun-
tered, then prealpha will automatically create groups and assign atoms so
that atoms with the same element symbol are treated together (within a
given molecule type).

39

• ’autocorrelation’: expects a logical (’T’ or ’F’). If ’T’, then the binary
intermittent autocorrelation function for each species is calculated and
reported.

• ’log spacing’: expects a logical (’T’ or ’F’). If ’T’, then the time steps of
the autocorrelation function are printed logarithmically (warmly recom-
mended).

• ’use ccc’: expects a logical (’T’ or ’F’). If ’T’, then the communal cluster
correction is turned on. What does this mean? Let’s say a neighbouring
donor molecule is shared by two acceptor molecules. Instead of counting
as 1 neighbouring molecule for each of the two acceptor molecules, it is
divided among them depending on how many connections there are to
each. This is important to conserve the correct composition when adding
all the species together.

• ’tmax’: Expects an integer, which is then taken as the maximum number
of steps into the future for the time correlation function.

To give an example, this is the input file used for making Figure 10:

1 acceptor

2 1 0.0 Li atom

5 donors

1 6 2.74 sulfolane-O

1 7 2.74 sulfolane-O

3 3 2.78 TfNCN-O

3 4 2.78 TfNCN-O

3 10 2.92 TfNCN-CN

group_elements

N_species 40

N_neighbours 7

nsteps 500000

sampling_interval 500

print_beads T

In this specific case, ’group elements’ can also be replaced with the following
block. The lines with (*) can also be omitted, they do not affect the analysis
itself since atoms are by default grouped by their atom indices (and there is
only lithium atom anyways so it does not matter if it is put in a group or not)

new_acceptor_group 2 (*)

assign_to_acceptor_group 1 (*)

new_donor_group 1

assign_to_donor_group 6

assign_to_donor_group 7

new_donor_group 3

assign_to_donor_group 3

40

assign_to_donor_group 4

new_donor_group 3 (*)

assign_to_donor_group 10 (*)

The typical output in the command line (or the log file, if you redirected the
output) looks something like this:

There was one acceptor: molecule type 2 (Li).

For this acceptor, 15 different species were observed:

Species #(1) in 22.9% of the cases.

Species #(2) in 18.6% of the cases.

Species #(3) in 15.7% of the cases.

Species #(4) in 8.6% of the cases.

Species #(5) in 7.1% of the cases.

(Only the first 5 printed here)

For each of these species, the first and last structure are written to the output
folder as .xyz files. In addition, there will be one file called ’speciation statistics.dat’
for each acceptor type, listing the detailed connections that made up each
species. For example, the output for the species shown in Figure 10 is as follows:

Species #(1) in 22.9% of the cases.

This species has a total of 4 connections,

with a total of 4 neighbour atoms in 4 neighbour molecules:

2 Molecules of type 1(SC4O2H8) with one connection each:

atom group 1 (donor) to atom index 1 (acceptor)

One molecule of type 3(N2SO2C2F3) with one connection:

atom index 10 (donor) to atom index 1 (acceptor)

One molecule of type 3(N2SO2C2F3) with one connection:

atom group 1 (donor) to atom index 1 (acceptor)

The total formal charge including the acceptor was -1.

4.12 Cluster Analysis input file

The first line must contain the operation mode. Two operation modes are avail-
able. The operation mode ’GLOBAL’ uses a set of atoms, and a global cutoff
applied to them. The cutoff can be specified with the switches ’single cutoff’ and
’scan cutoff’. The atoms can be specified with the switches ’add atom index’
and ’add molecule type’. The operation mode ’PAIRS’ uses pairs of atoms,
each of which with their own cutoff. Pairs are uniquely specified with the ’pair’
switch. The following switches may be specified in any order:

• ’quit’: Terminates the analysis. Lines after this switch are ignored.”

• ’nsteps’: Followed by one integer, which is interpreted as the highest
timestep number to consider.

• ’sampling interval’: Expects one integer - the sampling interval, i.e. every
this many steps of the trajectory will be used.

41

• ’print step’: This step will be printed (separate files for monomers, dimers,
3-mers, etc.). Note that, in case of the operation mode GLOBAL, there
will be a file for every cluster size at every cutoff for every specified step,
which will results in a lot of files if used carelessly.

• ’print spectators’: expects a logical (’T’ or ’F’). If ’T’, then the spectators
are also printed at every requested ’print step’. Spectators are molecules
which do not contribute atoms to the cluster analysis.

• ’print statistics’: expects a logical (’T’ or ’F’). If ’T’, then the detailed
cluster statistics are calculated and printed.

• ’custom weight’: expects one real number, which will be used as weight
for all atoms specified below (or until a new ’custom weight’ switch is
encountered). This affects the weight average in the statistics output. By
default, the full molecule charge is used, even if more than one atom is
specified.

The following switches apply only for the operation mode GLOBAL:

• ’add atom index’: expects two integers - the molecule type index and the
atom index of the atom to be considered for the analysis.

• ’add molecule type’: expects one integer, which is the molecule type index
of the molecule to consider. All atoms of this molecule will be considered
for the cluster analysis.

• ’single cutoff’: expects one real number, which is the cutoff to add to the
list of cutoffs.

• ’scan cutoff’: expects two real numbers and one integer. The real numbers
are the lower and upper end for the cutoff scan, respectively. The integer
specifies the number of steps for the scan including the lower and upper
ends.

The following switch applies only for the operation mode PAIRS:

• ’pair’ expects four integers and one real number. The molecule type index
and the atom index of the first atom to be considered for the analysis.
Then, the molecule type index and the atom index of the second atom to be
considered for the analysis. Finally, as the real number, the corresponding
cutoff for this pair of atoms.

42

To hopefully make this more clear, here a small example. Let’s assume
we have two molecules, 1 and 2. We want to look at close contacts between
atom 15 in molecule 1 and atom 7 in molecule 2. From the RDF, we know
that a reasonable cutoff is 4.30 Ångström. We want to analyse every 10th step
from 1 to 10000, and we want to print the observed clusters for step 270. The
corresponding input file for the operation mode GLOBAL would be:

GLOBAL

nsteps 10000

sampling_interval 10

print_spectators F

print_statistics T

print_step 270

add_atom_index 1 15

add_atom_index 2 7

single_cutoff 4.30

We can get the exact same results using the PAIRS operation mode:

PAIRS

nsteps 10000

sampling_interval 10

print_spectators F

print_statistics T

print_step 270

pair 1 15 2 7 4.30

Why are there two different operation modes? the PAIRS mode allows us to
a) use specific cutoffs for specific pairs and b) exclude unwanted pairs. For
example, maybe we have a system with Na+, an ether, and a [NO3]− anion. In
this case, we can a) specify pairs of sodium with the ether oxygen and the anion
oxygen using different cutoff distances, and b) exclude ether-anion pairs.

Similarly, it is possible to specify many different cutoffs in the GLOBAL
mode (which of course does not work for PAIRS since they are specific). Thus,
we can easily produce a cluster count function and structures/statistics at dif-
ferent cutoffs.

43

5 Research Examples

5.1 Research Example 1: Ammonium Ionic Liquids

The required input files for this example16 can be found here: https://github.
com/FPhilippi/prealpha/tree/master/Research_Example_1 In the example,
the analysis is started by submitting ’invoke prealpha simple.pbs’ to the PBS
queuing system of a high performance computing facility. prealpha will then
perform the analyses in ’general.inp’. These are:

• radius of gyration, maximum distance of any atom in a molecule from its
centre of mass (line 17)

• a charge arm distribution (line 21), as described in the additional input
file ’charge arm cation.inp’

• histogram of the dihedral angles in the anion (the two C-S-N-S dihedrals)
and the cation (all 9 backbone dihedrals) (line 24 and 26)

• the Coulomb energy integral (line 28). This will also produce a charge
weighted polar distribution function of all ions around a central ion (file
ends in ’ pdf’) and the sum rules (file ends in ’ numberintegral’)

• mean squared (line 31) and mean quartic (line 33) displacements, from
which diffusion coefficients and alpha2 parameters can be obtained.

Note that in the corresponding molecular input file ’molecular.inp’, the atomic
charges need to be specified for the charge arm analyses to make sense. It is
advisable to perform a separate analysis using the centre of charge instead of the
centre of mass for the Coulomb energy integrals. To this end, the atomic charges
are simply passed to prealpha as masses, as shown in ’molecular COC.inp’ and
’general COC.inp’.∗

5.2 Research Example 2: Charge Transfer and Polaris-
ability

Most inputs - such as those for the Coulomb energy integrals - were already
part of the Research Example 1, cf. also Figure 4 and Figure 6. The additional
analyses in this example12 can be performed with the input files in section 3.2.1,
cf. the folder ’Example Drudes’ and the general input files ’Drudes vel.inp’
and ’Drudes xyz.inp’ in the parent directory. The following two commands are
relevant in ’Drudes xyz.inp’, both compatible with sequential read:

remove_drudes 1 1

remove_cores 1 1

∗This workaround is now no longer necessary - see ’center of charge’ in subsection 4.7

44

The first command (line 9) collapses Drude particle and Drude core to just
one real atom. This is a very useful processing step to make trajectories with
Drude particles digestible to other software. It is also worth pre-processing
the trajectory in this way before subsequent analyses with prealpha which do
not require the Drude particles, this gives better performance and needs less
memory.

The second command (line 10) prints Drude particle positions relative to
their core. This might not seem very useful, but can be used in combination with
TRAVIS3,2 to generate a Power spectrum of just the Drude internal motions,
Figure 14.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

2

4

6

8

10

12

14

16

18

20

Po
w

er
 s

pe
ct

ra
l d

en
si

ty
 /

a.
u.

Wavenumber / cm-1

 CL&Pol/TG-NH (Drude particles)
 CL&Pol/TG-NH (Real particles)
 CL&P (C-H fix)
 CL&P

x 333

Figure 14: Power spectra for different simulation setups (vertically offset). red
= internal motions of Drude particles, multiplied with 333 (via remove cores).
The temperature of real degrees of freedom was 333 K, while Drude internal
motions were kept at 1 K. pink = motions of real degrees of freedom in the same
simulation (via remove drudes). Blue and Black are non-polarisable simulations
with and without C-H constraints, respectively. The dashed black circles show
undesired overlap of high frequency oscillations. Adapted from Ref. [12] with
permission from the PCCP Owner Societies.

45

The ’drude temp’ command in the ’Drudes vel.inp’ input file (line 7) is use-
ful to check thermostatting. The trivial input example should generate the
following output:

TCM: 360.9 K (1024)

TR: 286.7 K (61440)

TD: 1.1 K (9728)

The degrees of freedom are given in brackets; TCM / TR / TD are equation (13)
/ (14) / (15) in reference [18], respectively. An example is shown in Figure 15.

0 2 4 6 8 10 12 14 16 18 20
320

340

360

380

400

420

440

Te
m

pe
ra

tu
re

 /
K

time / ps

 TCOM

 TRconstrained
C-H bonds
after 10 ps

Figure 15: The temperature of the centre of mass motions (TCOM=TCM) may
be off if undesired heat transfer from Drude to real degrees of freedom violates
equipartition. The signature of this heat transfer is not visible in the tempera-
ture of the real degrees of freedom TR, which is what a primitive temperature
control algorithm might use. Adapted from Ref. [12] with permission from the
PCCP Owner Societies.

46

5.3 Research Example 3: Advanced Correlation Functions

Here we investigated the dynamics in ionic liquids with different anions (The
input files etc are deposited in the reference).14 Figure 16 shows the decorrela-
tion of several time correlation functions over 7 orders of magnitude from 1 fs
to 10 ns. Two trajectories were used, one dumping with a resolution of 1 fs (to
calculate the TCFs up to 1ps), and a longer one dumping every 1 ps (for the
TCFs >1 ps). Dynamical heterogeneity was investigated using the α2 param-
eter, Figure 17. The intermittent dihedral autocorrelation function is shown
too; these two phenomena (dynamical heterogeneity and cis-trans interconver-
sion) occur on comparable timescales. Finally, we also calculated the diffusion
coefficients by fitting the diffusive region of the mean squared displacements,
Figure 18. The diffusion coefficients were determined independently for x/y/z
directions, the average is identical to the diffusion coefficient determined from
the three dimensional mean squared displacement. However, using the three
dimensions separately, an error estimate is possible (see the error bars).

10-3 10-2 10-1 100 101 102 103 104
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
1(
t)

time / ps

 C1,SS(t)
 C1,CA(t)
 C1,dih(t)

Figure 16: Different time correlation functions of the [NTf]−2 anion. Here, C1,SS

is the vector reorientation function using the vector connecting two sulphur
atoms; C1,CA is the reorientation function using the charge arm vector; C1,dih is
the intermittent dihedral autocorrelation for cis-trans interconversion. Adapted
from Ref. [14] with permission from the PCCP Owner Societies.

47

10-3 10-2 10-1 100 101 102 103 104

0.0

0.2

0.4

0.6

0.8

1.0

time / ps

C
1,
di
h(
t)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

a
2(
t)

Figure 17: The α2 parameter, and also the dihedral TCF again. Adapted from
Ref. [14] with permission from the PCCP Owner Societies.

flexible cis cis+trans trans [CHTf2]
0

1

2

3

4

5

6

7

8

9

10
7 D

- se
lf /

 c
m

2 s-1

 flexible
 cis
 cis+trans
 trans
 [CHTf2]

Figure 18: Anion diffusion obtained via the mean squared displacements.
Adapted from Ref. [14] with permission from the PCCP Owner Societies.

48

5.4 Research Example 4: Speciation and Cluster Analysis

The required input files for this example15 can be found here: https://github.
com/FPhilippi/prealpha/tree/master/Research_Example_4

In this directory, a very short example trajectory is also provided. This
trajectory corresponds to the simulation of [Li(G1)3][PO2F2] from reference [15]
with hydrogen atoms omitted, hence the results should be the same (apart from
slight numerical deviations since the example trajectory has reduced position
accuracy and was reduced to 40 steps). The analyses are performed simply by
invoking prealpha in the directory after compiling it:

cd /pathtoprealpha/prealpha/

gfortran -fopenmp pre-alpha.f03 -o prealpha

cd ./Research_Example_4/

../prealpha

The analysis should finish within seconds and write a number of output files
into the directory labeled ’output’.

The files from the speciation analysis start with ’All-to-Li ’ (Lithium cen-
tred species and statistics) and ’Li-to-All ’ (species and statistics centred on the
anion / glyme). The .xyz files produces correspond to the identified species and
can be opened with standard software like Avogadro. Always the first and last
instance of a species are printed, they should be the same at least in terms of
their connectivity. The full list of species including details like their connec-
tions are written to the respective ’...speciation statistics.dat’ files. The inter-
mittent binary autocorrelation functions for all the species are written to the
’...species autocorrelation.dat’ files; of course there are not enough steps in the
example trajectory for robust statistics. Finally, ’...speciation statistics table.dat’
lists the stochiometric coefficients of the coordination partners for each of the
species. For example, the stochiometric coefficient of Li in ’[C4O2][(Li)1]’ is 0.44,
which is less than half the formal stochiometric coefficient (which is 1). Thus,
in this species, the lithium connected to the glyme molecule has on average
another 1.3 connections apart from that to the glyme itself.

The files starting with ’GLOBAL ’ were produced by the cluster analysis
using a global cutoff of 4.25 Å with P and Li as the atoms in the set for the
clustering. The files starting with ’PAIRS ’ were produced by the cluster anal-
ysis using P-Li and O-Li pairs with their respective cutoffs obtained from the
RDF. It is worth pointing out the similarity between those analysis, for example
comparing these two files:

GLOBAL_step_1_cutoff=0.425E+01_7-mers.xyz

PAIRS_step_1_12-mers.xyz

The difference is that in the PAIRS analysis, glyme is also included, Figure 19
and Figure 20.

49

Figure 19: The structure printed in the output file
’GLOBAL step 1 cutoff=0.425E+01 7-mers.xyz’ of this example, using a
global cutoff of 4.25 Å. This is a ’7-mer’ because it contains 3xLi and 4xP.

Figure 20: The structure given in the file ’PAIRS step 1 12-mers.xyz’. This is
a 12-mer because it contains the 7-mer in Figure 19 as well as 5 glyme oxygens.

50

6 Disclaimer

Everyone knows it, but it should be mentioned anyway:

TO ERR IS HUMAN.

I give no warranty for any results, or anything else for that matter. If you
have a problem, drop me an email; I will give advice where feasible.

Best,
Frederik Philippi

This work was funded by the Imperial President’s PhD Scholarship from Octo-
ber 2018 to June 2022.
This work was funded by the Postdoctoral Fellowships for Research in Japan
of the Japan Society for the Promotion of Science from October 2022 to April
2024.
This project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Sk lodowska-Curie grant
agreement No 101108104 from May 2024.

Funded by

the European Union

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.
You should have received a copy of the GNU General Public License along with
this program. If not, see https://www.gnu.org/licenses/

References

[1] Julian B B Beckmann et al. “Molecular Dynamics of Ionic Liquids from
Fast-Field Cycling NMR and Molecular Dynamics Simulations”. In: The
Journal of Physical Chemistry B 126.37 (Sept. 2022), pp. 7143–7158. issn:
1520-6106. doi: 10.1021/acs.jpcb.2c01372. url: https://pubs.acs.
org/doi/10.1021/acs.jpcb.2c01372.

51

[2] M. Brehm et al. “TRAVIS—A free analyzer for trajectories from molecular
simulation”. In: The Journal of Chemical Physics 152.16 (Apr. 2020),
p. 164105. issn: 0021-9606. doi: 10.1063/5.0005078. url: https://
doi.org/10.1063/5.0005078%20http://aip.scitation.org/doi/10.

1063/5.0005078.

[3] Martin Brehm and Barbara Kirchner. “TRAVIS - A Free Analyzer and Vi-
sualizer for Monte Carlo and Molecular Dynamics Trajectories”. In: Jour-
nal of Chemical Information and Modeling 51.8 (Aug. 2011), pp. 2007–
2023. issn: 1549-9596. doi: 10.1021/ci200217w. url: https://pubs.
acs.org/doi/10.1021/ci200217w.

[4] Tom Frömbgen et al. “Cluster Analysis in Liquids: A Novel Tool in TRAVIS”.
In: Journal of Chemical Information and Modeling 62.22 (Nov. 2022),
pp. 5634–5644. issn: 1549-9596. doi: 10.1021/acs.jcim.2c01244. url:
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01244.

[5] G. Gradenigo et al. “Einstein Relation in Systems with Anomalous Diffu-
sion”. In: Acta Physica Polonica B 44.5 (2013), p. 899. issn: 0587-4254.
doi: 10.5506/APhysPolB.44.899. url: http://www.actaphys.uj.edu.
pl/vol44/abs/v44p0899.

[6] Jean-Pierre Hansen and Ian R. McDonald. “Molecular Liquids”. In: The-
ory of Simple Liquids. Elsevier, 2013, pp. 455–510. doi: 10.1016/B978-
0-12-387032-2.00011-8. url: https://linkinghub.elsevier.com/
retrieve/pii/B9780123870322000118.

[7] Philipp Honegger et al. “Understanding the Nature of Nuclear Magnetic
Resonance Relaxation by Means of Fast-Field-Cycling Relaxometry and
Molecular Dynamics Simulations - The Validity of Relaxation Models”.
In: Journal of Physical Chemistry Letters 11.6 (Mar. 2020), pp. 2165–
2170. issn: 19487185. doi: 10.1021/acs.jpclett.0c00087. url: https:
//pubs.acs.org/doi/10.1021/acs.jpclett.0c00087.

[8] William Humphrey, Andrew Dalke, and Klaus Schulten. “VMD: Visual
molecular dynamics”. In: Journal of Molecular Graphics 14.1 (Feb. 1996),
pp. 33–38. issn: 02637855. doi: 10 . 1016 / 0263 - 7855(96) 00018 - 5.
arXiv: arXiv:1503.05249v1. url: https://www.tapbiosystems.com/
tap/products/index.htm%20https://linkinghub.elsevier.com/

retrieve/pii/0263785596000185.

[9] Hemant K. Kashyap et al. “How Is Charge Transport Different in Ionic
Liquids and Electrolyte Solutions?” In: The Journal of Physical Chemistry
B 115.45 (Nov. 2011), pp. 13212–13221. issn: 1520-6106. doi: 10.1021/
jp204182c. url: http://pubs.acs.org/doi/abs/10.1021/jp204182c.

[10] Hualin Li et al. “The relationship between ionic structure and viscosity
in room-temperature ionic liquids”. In: The Journal of Chemical Physics
129.12 (Sept. 2008), p. 124507. issn: 0021-9606. doi: 10.1063/1.2978378.
url: http://aip.scitation.org/doi/10.1063/1.2978378.

52

[11] Jesse G. McDaniel and Arun Yethiraj. “Understanding the Properties of
Ionic Liquids: Electrostatics, Structure Factors, and Their Sum Rules”.
In: The Journal of Physical Chemistry B 123 (2019), pp. 3499–3512. issn:
1520-6106. doi: 10.1021/acs.jpcb.9b00963.

[12] Frederik Philippi et al. “Charge transfer and polarisability in ionic liq-
uids: a case study”. In: Phys. Chem. Chem. Phys. 24 (5 2022), pp. 3144–
3162. doi: 10.1039/D1CP04592J. url: http://dx.doi.org/10.1039/
D1CP04592J.

[13] Frederik Philippi et al. “Evolving better solvate electrolytes for lithium
secondary batteries”. In: Chemical Science 15.19 (2024), pp. 7342–7358.
issn: 2041-6520. doi: 10.1039/D4SC01492H. url: https://xlink.rsc.
org/?DOI=D4SC01492H.

[14] Frederik Philippi et al. “Flexibility is the key to tuning the transport
properties of fluorinated imide-based ionic liquids”. In: Chemical Science
13.32 (2022), pp. 9176–9190. issn: 2041-6520. doi: 10.1039/D2SC03074H.
url: http://xlink.rsc.org/?DOI=D2SC03074H.

[15] Frederik Philippi et al. “Manuscript in preparation”. In: ().

[16] Daniel Rauber et al. “Curled cation structures accelerate the dynamics
of ionic liquids”. In: Physical Chemistry Chemical Physics 23.37 (2021),
pp. 21042–21064. issn: 1463-9076. doi: 10.1039/D1CP02889H. url: http:
//pubs.rsc.org/en/Content/ArticleLanding/2021/CP/D1CP02889H%

20http://xlink.rsc.org/?DOI=D1CP02889H.

[17] Keisuke Shigenobu et al. “Molecular Level Origin of Ion Dynamics in
Highly Concentrated Electrolytes”. In: The Journal of Physical Chemistry
B 127.48 (Dec. 2023), pp. 10422–10433. issn: 1520-6106. doi: 10.1021/
acs.jpcb.3c05864. url: https://pubs.acs.org/doi/10.1021/acs.
jpcb.3c05864.

[18] Chang Yun Son et al. “Proper Thermal Equilibration of Simulations with
Drude Polarizable Models: Temperature-Grouped Dual-Nosé–Hoover Ther-
mostat”. In: The Journal of Physical Chemistry Letters 10.23 (Dec. 2019),
pp. 7523–7530. issn: 1948-7185. doi: 10.1021/acs.jpclett.9b02983.
url: https://pubs.acs.org/doi/10.1021/acs.jpclett.9b02983.

[19] J. Trullàs and J. A. Padró. “Diffusion in multicomponent liquids: A new
set of collective velocity correlation functions and diffusion coefficients”.
In: The Journal of Chemical Physics 99.5 (Sept. 1993), pp. 3983–3989.
issn: 0021-9606. doi: 10.1063/1.466191. url: http://aip.scitation.
org/doi/10.1063/1.466191.

[20] J. Trullàs and J. A. Padró. “Self- and cross-velocity correlation functions
and diffusion coefficients in liquids: A molecular dynamics study of bi-
nary mixtures of soft spheres”. In: Physical Review E 50.2 (Aug. 1994),
pp. 1162–1170. issn: 1063-651X. doi: 10.1103/PhysRevE.50.1162. url:
https://link.aps.org/doi/10.1103/PhysRevE.50.1162.

53

[21] Alexander Wulf et al. “Molecular reorientation in ionic liquids: A com-
parative dielectric and magnetic relaxation study”. In: Chemical Physics
Letters 439.4-6 (May 2007), pp. 323–326. issn: 00092614. doi: 10.1016/
j.cplett.2007.03.084. url: https://linkinghub.elsevier.com/
retrieve/pii/S0009261407003922.

54

